Aktuelle Beobachtungen der XMM-Newton-Teleskope der Europäischen Weltraumorganisation NASADas Chandra-Teleskop der NASA hat drei ungewöhnlich kühle junge Neutronensterne entdeckt und stellt aktuelle Modelle in Frage, indem es zeigt, dass sie viel schneller abkühlen als erwartet.
Dieses Ergebnis hat erhebliche Auswirkungen und lässt darauf schließen, dass es sich nur um einige der vielen Vorschläge handelt Neutronenstern Diese Modelle sind praktikabel und weisen auf die Möglichkeit eines Durchbruchs bei der Verknüpfung der Theorien der Allgemeinen Relativitätstheorie und der Quantenmechanik durch astrophysikalische Beobachtungen hin.
Entdeckung ungewöhnlich kalter Neutronensterne
Das XMM-Newton-Observatorium der ESA und das Chandra-Observatorium der NASA haben drei junge Neutronensterne entdeckt, die für ihr Alter ungewöhnlich kühl sind. Durch den Vergleich ihrer Eigenschaften mit verschiedenen Modellen von Neutronensternen kamen Wissenschaftler zu dem Schluss, dass die niedrigen Temperaturen fremder Sterne etwa 75 % der bekannten Modelle ausschließen. Dies ist ein großer Schritt zur Aufdeckung der „Zustandsgleichung“ eines einzelnen Neutronensterns, die ihnen allen zugrunde liegt, mit wichtigen Auswirkungen auf die Grundgesetze des Universums.
Extreme Dichte und unbekannte Materiezustände
Nach Schwarzen Löchern mit stellarer Masse sind Neutronensterne die dichtesten Objekte im Universum. Jeder Neutronenstern ist der kompakte Kern eines Riesensterns, der übrig bleibt, nachdem der Stern in einer Supernova explodiert. Wenn der Treibstoff aufgebraucht ist, kollabiert der Kern des Sterns unter der Schwerkraft, während seine äußeren Schichten in den Weltraum geschleudert werden.
Die Materie im Zentrum eines Neutronensterns ist so stark komprimiert, dass Wissenschaftler immer noch nicht wissen, welche Form sie annimmt. Neutronensterne verdanken ihren Namen der Tatsache, dass unter diesem enormen Druck sogar Atome kollabieren: Elektronen verschmelzen mit Atomkernen und verwandeln Protonen in Neutronen. Aber es könnte noch seltsamer kommen: Extreme Hitze und Druck könnten exotischere Teilchen stabilisieren, die anderswo nicht überleben, oder die Teilchen könnten in einer wirbelnden Suppe ihrer Quarks verschmelzen.
Was im Inneren eines Neutronensterns passiert, wird durch die sogenannte „Zustandsgleichung“ beschrieben, ein theoretisches Modell, das die physikalischen Prozesse beschreibt, die im Inneren eines Neutronensterns ablaufen können. Das Problem besteht darin, dass Wissenschaftler noch nicht wissen, welches der Hunderten möglichen Zustandsgleichungsmodelle richtig ist. Während das Verhalten einzelner Neutronensterne von Eigenschaften wie ihrer Masse oder ihrer Rotationsgeschwindigkeit abhängen kann, müssen alle Neutronensterne derselben Zustandsgleichung folgen.
Implikationen von Beobachtungen der Abkühlung von Neutronensternen
Bei der Untersuchung von Daten des XMM-Newton-Observatoriums der ESA und des Chandra-Observatoriums der NASA entdeckten Wissenschaftler drei außergewöhnlich junge und kühle Neutronensterne, die 10 bis 100 Mal kühler sind als ihre gleichaltrigen Gegenstücke. Durch den Vergleich ihrer Eigenschaften mit den von verschiedenen Modellen vorhergesagten Abkühlungsraten kamen die Forscher zu dem Schluss, dass die Anwesenheit dieser drei exotischen Sterne die meisten vorgeschlagenen Zustandsgleichungen ausschließt.
„Das junge Alter und die kalte Oberflächentemperatur dieser drei Neutronensterne können nur durch einen schnellen Abkühlungsmechanismus erklärt werden. Da eine verstärkte Abkühlung nur durch bestimmte Zustandsgleichungen aktiviert werden kann, können wir einen Großteil der möglichen Modelle ausschließen “, erklärt die Physikerin Nanda Rhea, deren Forschungsgruppe am Institut für Weltraumwissenschaften arbeitet (ICE-CSIC) und das Institut für Weltraumstudien von Katalonien (Internationale Atomenergiekommission) leitete die Untersuchung.
Vereinheitlichung von Theorien durch Untersuchung des Neutronensterns
Die Entdeckung der wahren Zustandsgleichung von Neutronensternen hat auch wichtige Auswirkungen auf die Grundgesetze des Universums. Es ist bekannt, dass Physiker noch nicht wissen, wie sie die allgemeine Relativitätstheorie (die die Auswirkungen der Schwerkraft auf großen Skalen beschreibt) mit der Quantenmechanik (die beschreibt, was auf der Teilchenebene passiert) verbinden können. Neutronensterne sind hierfür das beste Testgelände, da ihre Dichte und Schwerkraft weit über alles hinausgeht, was wir auf der Erde erzeugen können.
Kräfte bündeln: vier Schritte zur Entdeckung
Die drei seltsamen Neutronensterne sind so kalt, dass sie für die meisten Röntgenobservatorien zu schwach sind, um gesehen zu werden. „Die überlegene Empfindlichkeit der Observatorien XMM-Newton und Chandra ermöglichte es nicht nur, diese Neutronensterne zu entdecken, sondern auch genug Licht zu sammeln, um ihre Temperaturen und andere Eigenschaften zu bestimmen“, sagt Camille Diez, wissenschaftliche Mitarbeiterin bei der ESA, die am XMM arbeitet -Newton-Daten.
Allerdings waren empfindliche Messungen nur der erste Schritt, um Rückschlüsse darauf zu ziehen, was diese Kuriositäten für die Zustandsgleichung von Neutronensternen bedeuteten. Zu diesem Zweck hat Nandas Forschungsteam am ICE-CSIC die komplementäre Expertise von Alessio Marino, Clara Dehmann und Konstantinos Kouvlaka zusammengeführt.
Alessio war ein Pionier bei der Bestimmung der physikalischen Eigenschaften von Neutronensternen. Das Team konnte aus den von ihren Oberflächen gesendeten Röntgenstrahlen auf die Temperaturen von Neutronensternen schließen, während die Größe und Geschwindigkeit der sie umgebenden Supernova-Überreste einen genauen Hinweis auf deren Alter lieferte.
Anschließend übernahm Clara die Leitung bei der Berechnung von „Abkühlungskurven“ für Neutronensterne für Zustandsgleichungen mit unterschiedlichen Abkühlungsmechanismen. Dabei geht es darum, aufzuzeichnen, was jedes Modell darüber vorhersagt, wie sich die Leuchtkraft des Neutronensterns – ein Merkmal, das direkt mit seiner Temperatur zusammenhängt – im Laufe der Zeit ändern wird. Die Form dieser Kurven hängt von vielen verschiedenen Eigenschaften des Neutronensterns ab, von denen nicht alle aus Beobachtungen genau bestimmt werden können. Aus diesem Grund berechnete das Team Abkühlungskurven für eine Reihe möglicher Neutronensternmassen und Magnetfeldstärken.
Schließlich brachte eine von Constantinos geleitete statistische Analyse alles zusammen. Maschinelles Lernen Um festzustellen, wie gut die simulierten Abkühlungskurven zu den Eigenschaften der seltsamen Kugeln passen, zeigte die Studie, dass die Zustandsgleichungen ohne einen schnellen Abkühlungsmechanismus keine Chance haben, mit den Daten übereinzustimmen.
„Die Neutronensternforschung erstreckt sich über viele wissenschaftliche Disziplinen, von der Teilchenphysik bis … Gravitationswellen„Der Erfolg dieser Arbeit beweist, wie wichtig Teamarbeit für die Weiterentwicklung unseres Verständnisses des Universums ist“, schließt Nanda.
Referenz: „Einschränkungen der Zustandsgleichung dichter Materie aus jungen, kühlen isolierten Neutronensternen“ von A. Marino, C. Dehmann, K. Koufalkas, N. Rea, J.A. Pons, D. Vigano, 20. Juni 2024, Natürliche Astronomie.
DOI: 10.1038/s41550-024-02291-y
„Zertifizierter Unruhestifter. Freundlicher Forscher. Web-Freak. Allgemeiner Bierexperte. Freiberuflicher Student.“
More Stories
Wann starten die Astronauten?
Fossilien zufolge wurde eine prähistorische Seekuh von einem Krokodil und einem Hai gefressen
Die Federal Aviation Administration fordert eine Untersuchung des Misserfolgs bei der Landung der Falcon-9-Rakete von SpaceX